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Two preconditioners for saddle point problems in fluid flows
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SUMMARY

In this paper two preconditioners for the saddle point problem are analysed: one based on the augmented
Lagrangian approach and another involving artificial compressibility. Eigenvalue analysis shows that with
these preconditioners small condition numbers can be achieved for the preconditioned saddle point matrix.
The preconditioners are compared with commonly used preconditioners from literature for the Stokes and
Oseen equation and an ocean flow problem. The numerical results confirm the analysis: the preconditioners
are a good alternative to existing ones in fluid flow problems. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Commonly used finite-element and finite-difference discretizations of the equations describing an
incompressible flow, like for example the Navier–Stokes equations, lead to an equation Kx = b,
where K is of saddle point type:

K =
(

A B

BT 0

)
(1)
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356 A. C. DE NIET AND F. W. WUBS

In this matrix we have A ∈ Rn×n , a positive definite matrix, not necessarily symmetric, and
B ∈ Rn×m , with m � n. Because of the zero diagonal block, K is indefinite, that is there are
eigenvalues with positive real part as well as eigenvalues with negative real part.

In general, there are two ways to solve large linear systems like the equation Kx = b: via
a direct or an iterative method. If the problems become large direct methods require too much
memory, so one is forced to use iterative methods. For an overview of commonly used Krylov
subspace methods see [1, Chapters 6 and 7]. To speed up the convergence it is profitable to use a
preconditioner. In this paper we will focus on that for the case of saddle point matrices.

From literature a number of preconditioners for saddle point matrices is available. For a broad
overview of the numerical solution of saddle point problems in all kind of applications see [2].
We will concentrate on incompressible flow problems. In Section 2, we recall the most important
preconditioners for those kind of problems. In Section 3, we analyse two alternative preconditioners.
In both sections we pay attention to the eigenvalues of the preconditioned saddle point matrix in
order to get insight into the quality of the preconditioners and the convergence behaviour in a Krylov
subspace method. The results of the eigenvalue analysis are supported by numerical experiments
presented in Section 4. We compare the preconditioners on three saddle point problems: the Stokes
equation, the Oseen equation and an equation from ocean circulation.

2. PRECONDITIONERS FROM LITERATURE

The general idea of constructing a preconditioner for the saddle point matrix is to exploit the
structure of the matrix in such a way that (reduced) systems result to which existing methods can
be applied.

Given a preconditioner K̂ , the size and distribution of the eigenvalues of the generalized eigen-
value problem Kx = �K̂ x are important for the convergence of the Krylov subspace method. For
many of the methods presented in this paper the eigenvalues � are related to the eigenvalues of the
matrix C = BTA−1B, which is minus the Schur-complement of A in the saddle point matrix K . In
general the matrix C will be dense, so one would never want to construct this matrix in practice.
However in several cases, for example the Stokes equation, good estimates for the eigenvalues of
C are available. In the remainder of the paper, we will assume that C is diagonizable and that
(�i , qi ) is an eigenpair of C , so Cqi = �i qi ; there are m of these pairs.

2.1. SIMPLE and SIMPLER

The first two preconditioners we want to mention are SIMPLE and SIMPLER. The original
methods have been proposed by Patankar [3] and are stand-alone iterative methods, based on a
special splitting. We follow the formulation as a preconditioner of Vuik and Saghir [4] and use it
in a Krylov subspace method. Both methods involve the matrix D, that is the diagonal of A, and
an approximation to the Schur-complement ĈSI = BTD−1B. Because D is diagonal, ĈSI will be
sparse in contrast to C .

The SIMPLE preconditioner has the following form:

K̂SI =
(

A AD−1B

BT 0

)
=
(

A 0

BT I

)⎛
⎝ I D−1B

0 −ĈSI

⎞
⎠
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PRECONDITIONERS FOR SADDLE POINT PROBLEMS 357

The factorization shows that solving an equation with K̂SI can be reduced to solving equations
with A and ĈSI.

Theorem 1
The matrix K̂−1

SI K has an eigenvalue 1 with multiplicity n. The remaining eigenvalues are equal

to the eigenvalues of the matrix Ĉ−1
SI C .

Proof
See [5]. �

Note that, even in the case of a symmetric K , the SIMPLE preconditioner is not symmetric,
therefore its transpose K̂T

SI could serve as a preconditioner as well. This idea is used in the SIM-

PLER preconditioner, that is formed by a combination of K̂SI and its transpose. The resulting
preconditioner is symmetric. We will denote the SIMPLER preconditioner by K̂SR. The determi-
nation of the eigenvalues of K̂−1

SR K is complicated. We refer to [6] for details. The most important
result of the analysis is that the eigenvalue 1 has multiplicity 2m. The remaining n−m eigenvalues
are the eigenvalues of a matrix that is a function of A, D and B. In general, the SIMPLER
preconditioner is more effective than SIMPLE and it is used quite often in industrial codes.

2.2. The preconditioner of Wathen and Silvester

Silvester and Wathen [7] have proposed the following block diagonal preconditioner:

K̂WS(�) =
(
A 0

0 I/�

)

Note that a symmetric A gives a symmetric preconditioner. In the rest of the paper we will call it
the WS-preconditioner.

For the eigenvalues of the WS-preconditioned matrix we have the following theorem.

Theorem 2
The matrix K̂−1

WS(�)K has an eigenvalue 1 with multiplicity (n−m). The remaining 2m eigenvalues
are equal to (1 ±√

1 + 4��i )/2.

Proof
The proof can be found in [7]. �

Usually �= 1 in case of the Stokes equation and �= � (the viscosity) in case of the Oseen
equation. However, the method is not very sensitive to the precise value. If A is symmetric
positive definite, C is also symmetric and positive definite, so the eigenvalues �i are real and
we can assume that there is a largest and smallest eigenvalue: 0� �min � �i � �max. If �<0 all
eigenvalues of the preconditioned matrix have positive real part and it becomes positive definite.
For values �< − 1/(4�max), the eigenvalues of the matrix K̂−1

WS(�)K become complex. For large
negative values of �, the imaginary component becomes large as well and this will slow down the
convergence.

The theorem shows that for A symmetric positive definite and for positive values of � the
eigenvalues are real and clustered in three regions. The first cluster coincides with the point
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1, the second cluster contains the negative eigenvalues (1 − √
1 + ��i )/2 and the third cluster

contains the positive eigenvalues (1 + √
1 + ��i )/2. The clusters are clearly separated, there-

fore, the convergence in a Krylov subspace method will be dominated by the two clusters away
from 1.

2.3. The preconditioner of Elman and Silvester

Elman and Silvester [8] studied the following non-symmetric preconditioner (from now on the
ES-preconditioner):

K̂ES(�) =
(
A B

0 I/�

)

Normally the preconditioner is used only if A is not symmetric. Nevertheless, it can be used as a
preconditioner for symmetric K as well and it even appears to be better than the WS-preconditioner.
The advantage of the ES-preconditioner is that the preconditioned matrix has more eigenvalues
equal to 1 and the distribution of the other eigenvalues is better as well. This is shown in the
following theorem.

Theorem 3
The matrix K̂−1

ES (�)K has an eigenvalue 1 with multiplicity n. The remaining eigenvalues are
equal to ��i .

Proof
The proof can be found in [8]. �

The theorem shows that at most two clusters can occur. One cluster is around the eigenvalues ��i
and if 1 is not in this cluster, there is another cluster namely the point 1 itself. The ‘cluster’ of all
eigenvalues 1 can be approximated very fast by a Krylov subspace method, therefore, the speed of
convergence will be dominated by the scattering of the eigenvalues ��i . In case of real symmetric
A the eigenvalues are real and lie in the interval [�max, �min]. Convergence then is determined
by the condition number �max/�min, which is equal to �(C). The parameter � does not occur in
the condition number, so its value appears to be arbitrary. We observed this �-independency in
numerical experiments that are not included in this paper.

2.4. The preconditioner of Kay, Loghin and Wathen

The fourth preconditioner we describe here is different from the previous ones because it has been
developed by Kay, Loghin and Wathen for a special class of saddle point problems, namely the
Navier–Stokes equations. In the rest of the paper we will refer to it as the KLW-preconditioner.
We treat the preconditioner here because it is quite popular and as far as we know the best
block-triangular preconditioner based on an approximation of the pressure Schur complement.

The incompressible Navier–Stokes equations on an open bounded domain are

−��u + (u · ∇)u + ∇ p = 0

∇ · u = 0
(2)
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PRECONDITIONERS FOR SADDLE POINT PROBLEMS 359

The linearized version of this equation is

−��u + (w · ∇)u + ∇ p = 0

∇ · u = 0
(3)

where the ‘wind’ w is such that ∇ · w = 0. These Oseen equations occur if we solve the Navier–
Stokes equations via a Picard iteration, where we take u = u(m) and w = u(m−1), the previous guess
for the solution.

After discretization of (3) we get a saddle point problem of the form (1), where A is of the
form �H + N . Here H is the discrete Laplacian (�), a symmetric and positive definite matrix.
The matrix N contains the convective part (w · ∇) of the equations and is non-symmetric.

In [9] the following preconditioner is proposed:

K̂KLW =
(
A B

0 ĈKLW

)
(4)

with special choice for ĈKLW

ĈKLW = BTBA−1
p Mp (5)

where Ap = �Hp + Np. Here the matrices Hp and Np represent again the diffusive and convective
part, respectively, however, they are now defined on the pressure space. The matrix Mp is the
pressure–mass matrix. In our applications we use finite-difference or finite-volume methods and
we scale the equations a priori, therefore, we usually have Mp = I .

Note that ĈKLW =C would imply that all eigenvalues of the preconditioned matrix K̂−1
KLWK are

1. In that case m of these eigenvalues are defective. Defective eigenvalues with large geometric
multiplicity can slow down the convergence in the Krylov subspace method. Fortunately, one can
easily show that the geometric multiplicity of all eigenvalues is at most 2.

In general the KLW-preconditioner will perform well if ĈKLW as defined in Equation (5) is
a good approximation to the true Schur complement. There are several ways to derive the given
expression. In [9] it is done via Green’s functions. We will use an argument that is given in [10].

The first step is the search for a matrix Ap such that

AB ≈ BAp (6)

We want this approximation to be as good as possible. This appears to be the case if the problem
giving Ap is similar to that giving A, but then defined on the pressure spaces. Left multiplica-
tion with BTA−1 gives BTB ≈CAp. A rearrangement of the equation results in the following
approximation to the Schur complement:

BTBA−1
p ≈C (7)

Note that BTB is the discrete form of ∇ · ∇ =� on the pressure space, therefore BTB = Hp. In
case of the Stokes equation (where the wind field w = 0, and so Np = 0) the preconditioner should
coincide with the ES-preconditioner (as described in Section 2.3). This is ensured by an additional
scaling of the approximation with the pressure–mass matrix, which gives us (5).
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Application of the KLW-preconditioner requires the solution of an equation with ĈKLW. Solving
that equation requires the application of Ap to a vector and the solution of an equation with BTB,
which is quite easy because it represents a discretization of a Laplacian.

The preconditioner introduces the matrix Ap, which is related to an artificial convection–diffusion
equation in the pressure space. We have to determine appropriate boundary conditions for this
problem and its matrix. The derivation and motivation of the preconditioner do not give a clear
indication what conditions we should impose. Kay et al. [9] and Elman et al. [10] advised to
choose standard Neumann boundary conditions in case of velocity boundary conditions. The main
argument is that the pressure field is determined up to a constant and that Neumann boundary
conditions keep this property for Ap.

For the eigenvalues of the KLW-preconditioned matrix we have the following result.

Theorem 4
The matrix K̂−1

KLWK has an eigenvalue 1 with multiplicity n. The remaining eigenvalues are equal
to the eigenvalues of the matrix Ĉ−1

KLWC .

Proof
The eigenvalues of K̂−1

KLWK are equal to the ones of K K̂−1
KLW. The last matrix is equal to(

A B

BT 0

)(
A−1 −A−1BĈ−1

KLW

0 Ĉ−1

)
=
(

I 0

BTA−1 CĈ−1
KLW

)

From this matrix we get the eigenvalues 1 (n times) and the eigenvalues of CĈ−1 which are the
same as the ones of Ĉ−1

KLWC . �

Now we have the same problem as with the eigenvalues of the SIMPLE preconditioned matrix
(note the similarity between this theorem and Theorem 1). The eigenvalues of Ĉ−1

KLWC are hard
to determine. There are merely numerical results that show that most eigenvalues in case of the
Oseen equations are clustered around 1. Only a few eigenvalues can be found outside a small
circle around 1. Theoretical results in the form of bounds on the eigenvalues are only obtained for
the more ‘symmetric’ approximation to the Schur complement M1/2

p (BTB)1/2A−1
p (BTB)1/2M1/2

p ,
that is never used in practice. See [10] for these results.

3. TWO ALTERNATIVE PRECONDITIONERS

We want to discuss two alternative preconditioners for saddle point equations. Both are symmetric
if K is symmetric.

3.1. A preconditioner based on the augmented Lagrangian

The first preconditioner can be viewed as a variant of the WS-preconditioner that we described in
Section 2.2. The difference: we add a term �BBT to the matrix A. This results in what we will
call the grad-div preconditioner

K̂GD(�) =
(
A + �BBT 0

0 I/�

)
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If A is symmetric positive definite and �>0, we have a symmetric and positive definite precon-
ditioner K̂GD for the symmetric and indefinite matrix K .

Let us define the following transformation matrix:

T (�) =
(
I �B

0 I

)
(8)

Application of the transformation with �>0 to a saddle point equation Kx = b, where K has the
structure (1), gives

T (�)Kx = T (�)b (9)

where

T (�)K =
(
A + �BBT B

BT 0

)
(10)

Note that T (�)K inherits symmetry from K .
Equation (9) is well known as the augmented Lagrangian formulation of the saddle point problem

[11, 12]. In case of incompressible flow problems it is also called grad-div stabilization, because
B and BT are the discrete versions of the gradient and the divergence operator, respectively, and
the addition of the term �BBT allows a more accurate solution of the velocity field for small
viscosity [13, 14].

The most important difference between the GD-preconditioner and the augmented Lagrangian
approach is that we use the augmented preconditioner for the non-augmented matrix (1). The
preconditioner is in fact the WS-preconditioner for T (�)K used as preconditioner for K itself.
This approach seems a little strange but the eigenvalue analysis will show the advantages.

We have the following theorem about the eigenvalues of the grad-div preconditioned matrix.

Theorem 5
The matrix K̂−1

GD(�)K has an eigenvalue 1 with multiplicity n. The remaining eigenvalues are
equal to

− ��i
1 + ��i

Proof
We solve the generalized eigenvalue problem Kx = �K̂GD(�)x . First, we split x in a natural way
in two variables: xT = (uT, pT). Expanding the eigenvalue problem gives

(1 − �)Au − ��BBTu + Bp = 0 (11)

BTu − �p/� = 0 (12)

Suppose � = 1, then the term (1 − �)Au drops out of the first equation. The remainder can be
written as −�B(BTu − p/�) = 0. Between the brackets we recognize the second equation, so if
that equation is satisfied, the first becomes trivial. Because the first equation reduces to a trivial one,
we can choose u totally free. For any u we have an eigenvector (uT, �uTB)T with eigenvalue 1.
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Since u ∈ Rn , there are at most n independent vectors u. Therefore, the multiplicity of the
eigenvalue 1 is n.

Now suppose that � �= 1. We rewrite Equation (12) with BTu = �p/� and substitute BTu in
Equation (11). We end up with

(1 − �)Au + (1 − �2)Bp= 0

We have chosen � �= 1 and A is non-singular, so we can invert (1−�)A and transform this equation
into u = −(1 + �)A−1Bp. This u can be substituted in Equation (12), which gives

−[(1 + �)C + �/�I ]p= 0

Now we replace p by qi , one of the eigenvectors of C . Because Cqi = �i qi , the equation will be
satisfied if [(1 + �)�i + �/�] = 0. Solving � from this expression gives

� = − ��i
1 + ��i

which proves the theorem. �

For positive � and �i real, the eigenvalues are contained in (−1, 0) ∪ {1}. Note that we cannot
choose � equal or close to −1/�i , because then 1 + ��i will become very small and we get a
very big eigenvalue. We can choose a negative value �<− 1/�min. However, we need an estimate
of the value of �min to choose an appropriate �. In general we do not have that, therefore, we
choose positive �.

It is remarkable that for � → ±∞ we have only two eigenvalues namely ±1. Therefore, for
large values of |�| the Krylov subspace method should converge in few iterations. However, in
practice it is not possible to use large �, because then the grad-div added system will become
almost singular.

We add one more remark on the eigenvalues. If we compare the grad-div preconditioner with
the preconditioner of Wathen and Silvester we see that by simply adding �BBT to A we half
the number of eigenvalues that is not equal to one and the remaining eigenvalues are scaled and
shifted such that they are much closer to −1.

3.2. A preconditioner based on artificial compressibility

The second preconditioner that we analyse in this section is constructed by adding artificial
compressibility to the matrix K . This means that the zero diagonal block is replaced by the
identity matrix multiplied with the parameter −1/�

K̂AC(�) =
(

A B

BT −I/�

)
(13)

The preconditioner can be viewed as a variant of the ES-preconditioner (see Section 2.3). We
obtain K̂AC(�) by replacing the zero block in K̂ES by BT.

This approach is not completely new. Almost three decades ago, Axelsson [15] proposed it as
preconditioning by regularization. Maybe due to the lack of support by numerical results in that
paper it has not been used much. In [16] we studied the spectral properties of the preconditioner.
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Recently, a similar approach was used in [17, 18] where it is called a primal-based penalty precondi-
tioner. In the last paper, a preconditioner is proposed for more general saddle point problems where
the lower (2, 2) block in (1) can be any negative semidefinite matrix. The AC-preconditioner we
describe here can be seen as a special case of the primal-based penalty preconditioner. The precon-
ditioner in [17] is applied to incompressible elasticity problems. We will apply our preconditioner
to incompressible flow equations as is done in [18].

In analogy to the case of the grad-div preconditioner, the eigenvalues of the matrix K , precon-
ditioned with K̂AC(�), are related to the eigenvalues of the Schur complement. This is stated in
the following theorem.

Theorem 6
The matrix K̂−1

AC(�)K has an eigenvalue 1 with multiplicity n. The remaining eigenvalues are
equal to

��i
1 + ��i

Proof
First, we expand the generalized eigenvalue problem Kx = �K̂AC(�)x with xT = (uT, pT).

(1 − �)Au + (1 − �)Bp = 0

(1 − �)BTu + �

�
p = 0

If � = 1, these equations reduce to p/� = 0. So p has to be zero and u is totally free. Any vector
(uT, 0)T is an eigenvector with eigenvalue 1. Since u ∈ Rn , the multiplicity of eigenvalue 1
is n.

Now consider the case where � �= 1. We premultiply the first equation with BTA−1 in order to
get (1 − �)BTu + (1 − �)Cp= 0. If we subtract this equation from the second one we get

�

�
p − (1 − �)Cp= 0

In this equation we replace p by qi , one of the eigenvectors of C . Now we use Cqi = �i qi and
we have (�/� − �i + ��i )qi = 0. The expression between brackets becomes zero if

� = ��i
1 + ��i

which proves the theorem. �

For �i real and positive values of �, the eigenvalues are contained in the semi-open interval
(0, 1]. For negative values of � we have the same conditions as for K̂WS: � should not be equal
to −1/�i and if �< − 1/�min the eigenvalues are in [1, ∞).

If we send � to ±∞ all eigenvalues of the preconditioned matrix converge to 1. Here, this is
less surprising than in case of the grad-div preconditioner, because the matrix K̂AC(�) converges
to K for large �.

The eigenvalues of the matrices K̂−1
GD(�)K and K̂−1

AC(�)K are the same, except for a minus
sign in front of the eigenvalues that are not one. This suggests some relation between the two
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preconditioners. Indeed there is one and it can be easily understood from the following factorization:(
A B

BT −I/�

)
=
(
I −�B

0 I

)(
A + �BBT 0

0 −I/�

)(
I 0

−�BT I

)
(14)

This shows that K̂AC(�) is a composition of transformations T (−�), T (−�)T, defined in Equation
(8), and a block diagonal matrix that is almost equal to K̂GD except for a minus sign in the second
diagonal block.

The factorization is useful not only for theoretical purposes. It provides a way to compute the
action of K̂−1

AC(�). The inverses of the transformation matrices are easy (T (−�)−1 = T (�)), so
the remaining problem is to solve an equation with A + �BBT in the block diagonal matrix.

We add another remark on the eigenvalues of the preconditioned matrix. Benzi and Olshanskii
[12] used an ES-preconditioner (with parameter −(�+�)) for the augmented system T (�)K . The
generalized eigenvalues then become (� + �)�i/(1 + ��i ). Note that these are almost the same
as the ones we obtained in Theorem 6 for the AC-preconditioner. We can explain the similarity
by transformations with T (�). If we ignore the parameter � (which is very small compared with
� in most cases), the ES-preconditioner in [12] is(

A + �BBT B

0 −I/�

)
=
(

A B

BT −I/�

)(
I 0

�BT I

)
= K̂AC(�)T (�)T (15)

This preconditioner is used for the matrix T (�)K which is equal to KT (�)T. Note that both the
preconditioner and the matrix have the same factor. In the generalized eigenvalue problem it would
drop out and we get the very same eigenvalue problem as we had for the AC-preconditioner. If we
forget the � and consider right preconditioning, the preconditioner in [12] applied to the augmented
system is equivalent to an AC-preconditioner applied to the original saddle point problem. This
explains why the results we obtain in Section 4.2 for the Oseen equations are similar to the results
in [12].

Instead of (15) we can consider the ES-preconditioner with +� as parameter as a preconditioner
for the augmented system. We have a similar factorization:(

A + �BBT B

0 I/�

)
=
(
I �B

0 I

)(
A + �BBT 0

0 I/�

)
= T (�)K̂GD(�)

Now this preconditioner and the augmented system have a factor T (�) in common. Using this
preconditioner as a left-preconditioner for the augmented system is equivalent to solving the
non-augmented system with a GD-preconditioner.

3.3. Remarks on the condition number

If one of the preconditioners K̂∗ in this paper is used in a Krylov subspace method, the convergence
will depend on the distribution of the eigenvalues of the preconditioned matrix over the complex
plane. In case of symmetric positive definite A, the distribution can be measured by the spectral
condition number �, which is the quotient of the largest and smallest eigenvalue in absolute value.

In case of the preconditioners in this paper the condition number appears not to be a good
estimate. This is caused by the large number of eigenvalues 1. In itself it is already advantageous
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when eigenvalues coincide, since the number of iterations of a Krylov subspace method is at
most equal to the number of different eigenvalues (assuming they are simple). However, if these
coinciding eigenvalues are also well separated from the others they become extreme eigenvalues,
of which the corresponding subspace is found first by the subspace method, and after that, these
eigenvalues do not play a role anymore in the speed of convergence, see [19, Sections 5.3, 6.2].
Therefore, we will use an effective spectral condition number �̃, instead of the real spectral
condition number �. The number �̃ is the quotient of the largest and smallest eigenvalue in the
absolute value not equal to one.

For the ES-preconditioner we have

�̃(K̂−1
ES (�)K ) = ��max

��min
= �max

�min
= �(C) (16)

The non-unit eigenvalues of the preconditioned matrices K̂−1
ACK and K̂−1

GDK are the same except
for a minus sign. Hence, their condition numbers are equal. Since, the function x/(1 + x) is
monotonously increasing, the largest eigenvalue of the preconditioned matrix corresponds to the
largest eigenvalue �max and the smallest to the smallest eigenvalue �min. The effective condition
number of both methods is

�̃(K̂−1
ACK ) = �̃(K̂−1

GDK ) = ��max

1 + ��max
· 1 + ��min

��min
= �max

�min
· 1 + ��min

1 + ��max
� �(C) (17)

The eigenvalue analysis already showed that the preconditioners are good for large �. This analysis
shows that for any positive value of �, the effective condition number of the preconditioners is
better than that of the ES-preconditioner at least in the case of symmetric and positive definite A.

3.4. Solving grad-div added systems

An important issue for the AC- and GD-preconditioner is the solution of grad-div added systems.
The alternative preconditioners have better spectral properties than the ES- and WS-preconditioner,
but they require the solution of systems involving A + �BBT. This system is more difficult to
solve than A itself. The gain in the outer iterations could get lost in the solution of systems in the
inner iterations.

The solution of systems with A is not an issue at all. In the applications in this paper the matrix
A is of convection–diffusion type with possibly a Coriolis force. For these type of systems a lot
of (algebraic) multigrid methods and incomplete LU factorizations are available that provide good
preconditioners [20, 21]. With the addition of �BBT to A it becomes questionable whether these
methods still can be applied. Therefore, in this section we will discuss ways to solve the grad-div
added systems.

In general, the addition of �BBT to A will create new entries in the matrix. The increase
of non-zeros depends on the underlying equations and their discretization. For the problems we
discuss in the next section the number of non-zeros is almost doubled by grad-div adding.

A second remark: if the matrix A is an M-matrix, which means it is symmetric positive definite
and diagonally dominant, the matrix A + �BBT will still be symmetric and positive definite (as
long as �>0), but it will loose diagonal dominance; there will be positive off-diagonal entries. For
M-matrices a lot of methods are available. In general they cannot be applied without any concern
to the matrix A + �BBT. However, in case of the test problems we describe in the next section,
we will see that for moderate values of � some of these methods can be applied.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:355–377
DOI: 10.1002/fld



366 A. C. DE NIET AND F. W. WUBS

Furthermore, we want to point out that the matrices A and A+�BBT are spectrally equivalent.
The matrix A−1(A + �BBT) has n − m eigenvalues 1 and the other m eigenvalues are 1 + ��i .
The effective condition number is

�̃(A−1(A + �BBT))= 1 + ��max

1 + ��min
� �(C)

If this last number is small, the matrix A can be used as preconditioner for A + �BBT. Instead
of the matrix A itself we can also use a preconditioner for A as a preconditioner for A + �BBT.

Finally, we have to remark that the theory about the solution of grad-div added systems is
not well developed yet. Several papers struggle with the question what is the best way to solve
this kind of systems. Olshanskii and Reusken [14] used a standard multigrid method, Dohrmann
and Lehoucq [17] and Gartling and Dohrmann [18] used a balancing domain decomposition by
constraints (BDDC) preconditioner and Benzi and Olshanskii [12] used a multigrid method with
a special type of Gauss–Seidel smoother. The last multigrid method seems the most promising
for our applications. At least for the Oseen equations the convergence is independent of the mesh
size. For all preconditioners it holds that the results deteriorate with increasing �.

Summarizing we can state that multigrid methods exist for the solution of grad-div added
systems that work fine for modest values of �. Unfortunately we do not have these codes, so in
the next section we will use a robust standard incomplete LU-factorization for the grad-div added
systems. Maybe an incomplete LU-factorization is not the best method, but for modest values it
suffices to illustrate the possibilities of the preconditioners.

The research for a better and more general approach for grad-div added systems especially for
larger values of � is ongoing.

4. NUMERICAL RESULTS

In this section, we show a comparison between the preconditioners for two different saddle point
problems. All computations are performed in MATLAB (7.1.0.183 (R14) Service Pack 3) on a
PC with two 2.4 GHz AMD Opteron processors and 7.6 GB memory.

4.1. Stokes flow in a driven cavity

The first problem is the two-dimensional Stokes equation in a driven cavity. The following set of
equations has to be solved on the unit square �:

−��u + ∇ p = 0

∇ · u = 0
(18)

where u(x, y) is the velocity field and p(x, y) the pressure field; the parameter � controls the
amount of viscosity. The non-trivial solution is determined by the boundary conditions that are
zero on three sides of the unit square. At the upper boundary (y = 1) we have a horizontal velocity
u(x, 1)= 1.

We can get rid of the parameter � by defining a new pressure variable p̄= p/�. If the first
equation is divided by �, we can substitute p by p̄ and the parameter � is gone. So we may assume
that � = 1.
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The equations are discretized on a uniform staggered grid (a Marker-and-Cell or C-grid) with
mesh size h using standard second-order finite differences, which results in a system of linear
equations Kx = b, where K is of saddle point form. It is well known that in this case the Schur
complement C = BA−1BT ∼ I , hence, the condition number �(C) is independent of the mesh size.

In Table I we show the number of iterations in BICGSTAB [22] needed to obtain an accuracy of
10−6 for the preconditioned Stokes matrix. We applied the preconditioners mentioned in this paper
and varied the parameter � in case of the artificial compressibility and grad-div preconditioner.
Moreover, we used several mesh sizes. Equations with A or A + �BBT are solved via an exact
LU factorization.

The results are as we expected from the eigenvalue analysis. The condition number �(C)

is independent of the mesh size and so is the number of iterations using the ES-, GD- and
AC-preconditioners. For the SIMPLER and WS-preconditioner the number of iterations slightly
increases when the mesh size decreases, so there is some grid dependence. The SIMPLE pre-
conditioner cannot be considered as a serious alternative, because the number of iterations grows
rapidly with the grid size.

As one can see, even for � equal to one, the number of iterations for the GD- and AC-
preconditioner is smaller than for the ES-preconditioner. According to (17) the effective condition
numbers of the GD- and AC-preconditioned matrices are smaller than that of the ES-preconditioned
matrix. The last number is equal to the condition number of C , that is independent of the grid
size. Indeed, BICGSTAB converges almost two times faster for the GD- and AC-preconditioner.
With increasing �, the effective condition numbers of GD and AC get even closer to 1 and the
number of iterations decreases further, as we expected from the analysis.

We have to remark that in Table I we only measured the number of iterations. The amount of
work per iteration per preconditioner varies quite a lot. For example, one iteration with SIMPLER
requires a lot more computations than one iteration with the AC-preconditioner, that in turn is more
expensive than one iteration with the ES-preconditioner. Therefore, in Table II we attempt to make
a fairer comparison between the methods. We compare the cpu-times for the construction of the
preconditioner and the solution of the largest Stokes problem. We do not use exact solves for the
subsystems A and A+�BBT, but instead we solve these system with GMRES using MATLAB’s
LUINC factorization as a preconditioner. The drop tolerance for the incomplete factorization is
3× 10−4 in case of A and 10−4 in case of A + �BBT. The tolerances are chosen such that both
factorizations have approximately the same amount of non-zeros per row. Because of the nested
iterative scheme we have to use a flexible Krylov method in the outer iteration. In the experiments
we used FGMRES [23]. There is no need to solve the inner iterations very accurately so there
we stop as soon as an accuracy of 10−3 is reached. The accuracy for the outer iteration is 10−6.

Table I. Number of iterations in BICGSTAB (accuracy 10−6) with several preconditioners for the Stokes
equation in a driven cavity.

Method SI SR WS ES GD GD GD AC AC AC
� — — 1 1 1 16 256 1 16 256

h = 1/32 48 8 15 7 5 3 3 4 2 2
1/64 111 12 18 7 5 3 3 4 2 2
1/128 243 14 20 7 5 3 2 4 2 2
1/256 >300 22 23 7 5 3 2 4 2 2

Note: Subsystems are solved exactly.
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Table II. Number of iterations in FGMRES (accuracy 10−6) and cpu-times required for the solution of the
Stokes equation with mesh size h = 1/256.

Method SR WS ES GD AC
Value of � — 1 1 16 16

Iterations in FGMRES 30 26 13 5 4
Construction time (s) 18 11 11 22 22
Solve time (s) 1822 456 214 171 113

Note: Subsystems are solved with GMRES up to an accuracy of 10−3 using as a preconditioner MATLAB’s
LUINC with drop tolerance 3× 10−4 (WS/ES) or 10−4 (GD/AC).

The table shows that the grad-div and artificial compressibility preconditioners can compete
in practice with the ES- and WS-preconditioners. The construction of the first preconditioners
is more expensive because we have to compute an incomplete LU factorization for the grad-div
added matrix that has more non-zeros than the original one. Note that even with the relative large
value �= 16 we are able to compute a good incomplete factorization for the matrix A+�BBT. So
the problems sketched in Section 3.4 appear to be not too serious in case of the Stokes equation.
The loss in time in the factorization phase of the GD- and AC-preconditioner is compensated by
a much faster convergence of the outer iteration in the solution phase.

Finally, we remark that the table illustrates that SIMPLER is much more expensive to ap-
ply than the other methods. It requires approximately the same amount of iterations as the
WS-preconditioner, but it is roughly four times more expensive per iteration.

4.2. Oseen equations in a driven cavity

The second test is a benchmark problem which is proposed by Elman et al. [10] and used by Benzi
and Olshanskii [12]. It is again a driven cavity problem, but now for the Oseen equations that we
described in Equation (3). The area � is the unit square. The boundary conditions are

u1 = u2 = 0 for x = 0, x = 1 and y = 0

u1 = 1, u2 = 0 for y = 1
(19)

the wind is

w =
⎛
⎝ 2(2y − 1)(1 − (2x − 1)2)

−2(2x − 1)(1 − (2y − 1)2)

⎞
⎠ (20)

This wind contains a single recirculation on the domain �. For a more detailed description of
the problem see [10]. We solve the problem on a regular grid with a Marker-and-Cell or C-grid
discretization using central differences.

We do not show the results of the SI-, SR-, WS- and ES-preconditioner because they perform
quite bad on the Oseen equations. The best preconditioner in this case is the KLW-preconditioner
so we will compare that one with the artificial compressibility preconditioner.

The results with the KLW-preconditioner for our discretization can be found in Table III. The
number of iterations is independent of the mesh size, but slightly depends on the viscosity. This
agrees with the results found in [10, 12].
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Table III. Number of iterations in GMRES (accuracy 10−6) for the KLW-preconditioner for the Oseen
equations in a driven cavity.

Viscosity �

h 1/20 1/40 1/80 1/160 1/320

1/16 17 19 21 24 26
1/32 17 19 21 22 24
1/64 18 20 21 23 25
1/128 19 20 22 23 25
1/256 18 19 22 23 25

Note: Subsystems are solved exactly.

Table IV. Number of iterations in GMRES (accuracy 10−6) for the artificial compressibility preconditioner
with �= 1 for the Oseen equations in a driven cavity.

Viscosity �

h 1/20 1/40 1/80 1/160 1/320

1/16 6 6 6 6 6
1/32 6 6 6 6 6
1/64 5 5 5 6 6
1/128 5 5 5 5 5
1/256 4 4 4 5 5

Note: Subsystems are solved exactly.

Table V. Number of iterations in GMRES (accuracy 10−6) for the artificial compressibility preconditioner
with several values of � for the Oseen equations in a driven cavity on the largest grid h = 1

256 .

Viscosity �

� 1/20 1/40 1/80 1/160 1/320

4 3 3 3 3 3
1 4 4 4 5 5
1/4 8 8 9 9 9
1/16 14 17 21 23 25

Note: Subsystems are solved exactly.

In Table IV one finds the results of preconditioning with the artificial compressibility precon-
ditioner for the Oseen equations. For the parameter � we chose the value 1. Clearly, the number
of iterations is independent of grid size and viscosity for this value of �.

The results we obtain are comparable with the ones in [18] on a slightly different Oseen problem.
In that paper the number of outer iteration seems to increase a little with the Reynolds number. We
do not observe this in Table IV. This difference could be explained by the choice of the parameter �.

We show the dependency on � in Table V. The table contains the number of iterations for
different values of � and �. Only for the smallest value � = 1

16 the number of iterations depends
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slightly on �. For even smaller values of � (for example 1
64 ) the number of iterations increases

more rapidly with decreasing viscosity and eventually the method will fail to converge. This is not
a surprise, because for these values the preconditioner becomes more and more similar to the ES-
preconditioner which is known to be not appropriate for the Oseen equation with small viscosity.

The number of iterations does not tell the whole story. In both Tables III and IV we solved the
subsystems with A and ĈKLW or A+�BBT exactly. In general, the last system will be more difficult
to solve. Therefore, in Table VI we compare the cpu-times for the largest problem (h = 1

256 ) and
for the two extreme values of �. When we have to apply the preconditioner we solve the subsystems
with GMRES using the incomplete LU factorization of MATLAB as preconditioner, which is
certainly not the best for these problems, but here it suffices. We chose the drop tolerance such
that all incomplete factorizations have approximately the same amount of fill per row.

In Table VII we show the dependency of the cpu-times on the grid size. The grid is refined with a
factor 2 in each direction. For the larger problems the solve time grows with a factor bigger than 4.
Neither KLW nor AC combined with LUINC is ideal in the sense that the amount of work scales
linearly with the problem size. In Table VII we see that the increase in time is caused mainly by
the number of inner iterations. This is observed in [18] as well. Here, we can blame LUINC. We
already mentioned that there exist better (multigrid) methods to solve A (see [9]) and A + �BBT

(see [12]), but, although the LUINC-factorization is not the best, the scaling results are reasonable.

Table VI. Number of iterations in FGMRES (accuracy 10−6) and cpu-times required to solve the Oseen
equations for h = 1

256 . In all cases � = 1.

Method KLW KLW AC AC
Viscosity � 1/20 1/320 1/20 1/320

Iterations in FGMRES 26 48 13 11
Construction time (s) 11 11 18 12
Solve time (s) 148 277 66 147

Note: Subsystems are solved with GMRES up to an accuracy of 10−3 using MATLAB’s LUINC factorization
with drop tolerance 3× 10−4 (KLW) and 10−4 (AC).

Table VII. Number of outer iterations in FGMRES (accuracy 10−6), average number of inner iterations in
GMRES (accuracy 10−3) and cpu-times required to solve the Oseen equations for � = 1

80 for different grid
sizes. In all cases � = 1.

KLW AC

Method Outer Inner Construction Solve Outer Inner Construction Solve
h iter iter time time iter iter time time

16 23 1 0.02 0.19 6 1 0.02 0.08
32 23 2 0.05 0.74 7 2 0.09 0.46
64 23 3 0.25 5.27 7 3 0.50 2.11

128 24 4 1.67 33.4 9 5 2.46 10.6
256 28 6 11.4 186 10 9 13.7 75.5

Note: Subsystems are solved using MATLAB’s LUINC factorization with drop tolerance 1× 10−4 (KLW)
and 3× 10−4 (AC) as preconditioner.
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The timing results show that in case of the Oseen equation the artificial compressibility precon-
ditioner is not only theoretical but also in practice a serious alternative to the KLW-preconditioner.

4.3. Thermohaline ocean circulation

One of the applications of the sketched preconditioners is the numerical simulation of three-
dimensional thermohaline ocean circulation. The equations of thermohaline ocean circulation
involve six variables, namely the flow velocity in longitudinal, latitudinal and vertical (depth)
direction (u, v, w), pressure (p), temperature (T ) and salinity (S). The word thermohaline means
that the flow is driven by temperature and heat fluxes. We have six conservation laws: conservation
of momentum in the three directions and conservation of mass, heat and salinity. For a detailed
description of the equations and the precise parameter setting see [24].

The longitudinal and latitudinal momentum equations are similar, the same holds for the con-
servation of salinity and heat, therefore, a natural clustering of variables is (u, v) and (S, T ).
Because of the Coriolis force that is involved we have to discretize on a spherical Lorenz grid,
which means that we have a B-grid in the horizontal (longitudinal and latitudinal) direction and
a C-grid in the vertical (depth) direction. A motivation for this special grid is given in [25]. The
discretized system has the following structure:⎛

⎜⎜⎜⎜⎜⎝

Auv 0 Guv 0

0 0 Gw BST

Duv Dw 0 0

Buv Bw 0 AST

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

xuv

xw

xp

xST

⎞
⎟⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎜⎝

buv

bw

bp

bST

⎞
⎟⎟⎟⎟⎟⎠ (21)

The four rows represent, respectively, conservation of momentum in horizontal direction, con-
servation of momentum in vertical direction (which simplifies to the hydrostatic pressure equation),
conservation of mass and conservation of heat and salinity.

The submatrix Auv consists of two convection–diffusion equations that are coupled by the
Coriolis force. The coupling is skew-symmetric, which makes the problem more difficult. Another
cause of troubles is the zero diagonal block in the vertical momentum equation. This block is
empty because the equation is dominated by the balance between gravity and pressure.

We designed a preconditioner for the equation. It is based on depth integration of the pressure, a
transformation of the continuity equation and an asymmetric rearrangement of rows and columns.
We will not describe it here in detail. In this paper, it is enough to know that at some point we
have to solve a depth-averaged saddle point problem. Let Muv denote the depth averaging operator
for the velocities and Mp the depth averaging operator for the pressure. We can then define the
depth average matrices A= MuvAuvMT

uv , B1 = MuvGuvMT
p and B2 = MpDuvMT

uv . Equation (21)
contains a saddle point problem that is revealed if we remove the second and fourth columns and
rows. Depth averaging of that saddle point problem results in a new saddle point problem and that
is the one we will consider (

A B1

B2 0

)(
x̄uv

x̄ p

)
=
(
b̄uv

b̄p

)
(22)

One of the properties of the resulting saddle point equation is that A is a convection–diffusion
equation involving a Coriolis force. In the Appendix, we show via Fourier analysis that the
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Coriolis force does not necessarily destroy the property that the Schur complement C = B2A−1B1
is independent of the mesh, though the condition number may be substantially larger.

As a test problem we isolate a saddle point problem from a developed flow in a rectangular box
in the North Atlantic (286–350◦ longitude, 10–74◦ latitude). With a developed flow we mean that
wind, temperature, salinity and Coriolis force play an important role in the solution. In other words
we deal with a real ocean flow problem. We extract saddle point problems for varying mesh sizes.
The problem has a horizontal Ekman number EH = 4× 10−5 and a Reynolds number Re= 2.5.
The low Reynolds number is because of the relative low resolution, which forces us to use a large
horizontal viscosity parameter.

In Table VIII one finds the number of iterations for some of the preconditioners we treated
in this paper. First of all we have to remark that we do not show the results for the ES- and
WS-preconditioner. Both are not able to produce an acceptable preconditioner. The maximum
number of iterations (300) in BICGSTAB is exceeded without getting near the desired accuracy.
Furthermore, the KLW-preconditioner cannot be used. It is not defined for this type of problem.
Because of the presence of a dominant skew-symmetric Coriolis force it is no longer clear what
kind of Ap we should choose such that Equation (6) is a good approximation.

If we apply the SIMPLE and SIMPLER preconditioners to the saddle point problem from
ocean circulation we get very bad results: the maximum number of iterations is exceeded before
we reach the desired accuracy. However, we can improve the performance of the preconditioners.
As we pointed out before, the Coriolis force is very important in the equations. It is essentially
a coupling between u and v and after discretization it will create an off-diagonal entry. The
SIMPLE(R) preconditioner uses the diagonal of A and, therefore, it does not see the importance
of Coriolis force. We can tackle this problem by a simple modification. Assume that we order u
and v such that the horizontal velocities that belong to the same grid point are clustered. Now if we
take the 2× 2-block-diagonal of A instead of the normal diagonal, we include the discretization of
the Coriolis force. We will call the resulting preconditioners modified SIMPLE(R) or MSI and
MSR for short.

The preconditioner proposed by Maxim and Olshanskii [13] for the rotation form of the Navier–
Stokes equations could be applied to the ocean problem as well. It is a variant of the KLW-
preconditioner that we described in Section 2.4. It uses a different approximation to the Schur
complement that involves a 2× 2-block-diagonal approximation to A similar to the one we use in
the MSI- and MSR-preconditioner. The numerical results we obtain for the preconditioner in [13]
are similar to that of MSI, what is not a surprise if one takes into account the similarity between

Table VIII. Average number of iterations in BICGSTAB (accuracy 10−6) for the modified SIMPLE(R),
grad-div and artificial compressibility preconditioner for a depth-averaged saddle point problem from

ocean circulation.

Method MSI MSR GD GD GD AC AC AC
� — — 16 64 256 16 64 256

n = 768 16 7 67 30 11 33 12 5
3072 33 23 96 26 13 34 13 5
6912 78 34 78 30 12 33 12 5
12 288 116 47 80 24 12 31 13 5
19 200 158 67 45 21 9 23 9 4

Note: Subsystems are solved exactly.
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Table IX. Number of iterations in FGMRES (accuracy 10−6) and cpu-times required for the solution of the
largest depth-averaged saddle point problem from ocean circulation (n = 19 200).

Method MSI MSR GD AC
Value of � — — 16 16

Iterations 155 83 254 40
Construction time 1.0 1.0 1.9 1.9
Solve time 41 36 152 24

Note: Subsystems are solved with GMRES (accuracy 10−3) using MATLABS’s LUINC with drop tolerance
3e−4 as preconditioner.

Theorems 1 and 4. Because these preconditioners are so closely related that we only show the
numerical results for the MSI-preconditioner.

In Table VIII we compare the results for different preconditioners. The problem size in the table
is the size of the depth-averaged saddle point problem of Equation (22). The reader should keep
in mind that the underlying ocean problem as described in (21) is at least 32 times bigger. The
solution of the full ocean equations requires a number of solves of the depth-averaged saddle point
problem.

We have to choose a relative large value for � to get acceptable results for the grad-div and
artificial compressibility preconditioner. This is probably due to the Coriolis force and bad scaling
of the original matrix. For the values shown in the table, the number of iterations seems to depend
only slightly on the problem size. For the modified SIMPLE and SIMPLER preconditioners the
dependence is a lot stronger.

Finally, we show in Table IX the cpu-times for the preconditioners on the largest saddle point
problem if we solve the subsystems with GMRES using MATLAB’s LUINC factorization as a
preconditioner. It seems that the grad-div and artificial compressibility preconditioners are more
sensitive to the replacement of exact solves by approximations than the modified SIMPLE and
SIMPLER method. The number of iterations using the grad-div preconditioner is even five times
bigger than in the case of exact solution of subsystems. This is possibly due to the asymme-
try of the saddle point problem. The artificial compressibility preconditioner is the fastest in
this case, although the modified SIMPLE and SIMPLER preconditioner perform quite well
too.

5. SUMMARY AND DISCUSSION

In this paper, we treated two preconditioners for the saddle point problem: one based on the
augmented Lagrangian and another on artificial compressibility. An eigenvalue analysis shows that
small condition numbers are achievable. This analysis is supported by the numerical experiments
for the Stokes equation, the Oseen equation and a saddle point problem from an ocean model.
In all cases the artificial compressibility preconditioner performs better than the preconditioners
SIMPLE(R), ES, WS and KLW.

One might consider the presence of the parameter � in the preconditioners as a disadvantage.
However, the advantage of this parameter is that we can shift work from inner to outer iterations
and back. If we increase the value of � the condition number of the preconditioned matrix will be
closer to 1 and the number of outer iterations will decrease. Meanwhile the grad-div added matrix
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will be more difficult to solve so the number of inner iterations will increase. The parameter should
be chosen such that there is a balance in work in the inner and outer iteration. In general, if the
entries in A and B are scaled such that they are of the same magnitude, �=O(1) works fine. Our
experience is that near this value the increase or decrease of � with a factor of 2 will shift the
amount of work, but the overall cpu-time will be almost the same. Hence, fortunately the choice
is not very critical.

As we mentioned in Section 3.4 the question of a robust preconditioner for grad-div added
matrices is not fully solved. We sketched several possibilities. However, the numerical experiments
show that in practice we can apply the methods for A to A + �BBT as well, at least for modest
values of �. Nevertheless, the solution of these systems needs more study especially for larger
values of �.

One of the advantages of the described preconditioners is that they perform well on the three
different test problems without concern. The eigenvalue analysis shows that the preconditioners
will always perform well on a saddle point problem that has the structure of (1) as long as we
choose � large enough. This certainly does not hold for the preconditioners from literature that
we described in this paper. The KLW-preconditioner is only defined for the Oseen equations;
the WS- and ES-preconditioners perform bad on Oseen and ocean equations; the SIMPLE(R)
preconditioners do not perform well on the Oseen equations and we have to modify the methods
before we can apply them to the ocean equations.

Both eigenvalue analysis and numerical experiments show that the grad-div and artificial com-
pressibility preconditioners might be good alternatives for existing preconditioners in the solution
of saddle point problems in fluid flows.

APPENDIX: FOURIER ANALYSIS FOR STOKES WITH CORIOLIS

In Section 4.3 we stated that the eigenvalues of the Schur complement C = BTA−1B in case of
the saddle point problem from the ocean equations are independent of the mesh size. Here, we
will motivate that via Fourier analysis on the Stokes equation with a Coriolis force, because in the
ocean flow equations the diffusion terms dominate the convection terms.

We start with the continuous case. The Stokes equation with a Coriolis force yields a saddle
point problem of the form (1) where A is a discrete version of⎛

⎜⎜⎜⎜⎝
�2

�x2
+ �2

�y2
�

−�
�2

�x2
+ �2

�y2

⎞
⎟⎟⎟⎟⎠

Here, � represents the ratio of the Coriolis force and the viscosity; we assume � to be constant.
The matrix B is the discretization of ⎛

⎜⎜⎜⎝
�
�x

�
�y

⎞
⎟⎟⎟⎠
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If we define ⎛
⎜⎜⎝
u

v

p

⎞
⎟⎟⎠=

⎛
⎜⎜⎝
u0

v0

p0

⎞
⎟⎟⎠ ei f1x+i f2y

the symbols of the continuous form of A and B become

Â=
⎛
⎝ f 21 + f 22 �

−� f 21 + f 22

⎞
⎠ and B̂ =

(
i f1

i f2

)

So the inverse of Â is

Â−1 = 1

( f 21 + f 22 )2 + �2

⎛
⎝ f 21 + f 22 −�

� f 21 + f 22

⎞
⎠

Hence Ĉ = B̂∗ Â−1 B̂ becomes (split Â−1 in symmetric and skew symmetric part):

Ĉ = ( f 21 + f 22 )2

( f 21 + f 22 )2 + �2

The largest eigenvalue is bounded by 1, and the smallest by f 4min/�
2. The minimum frequency

fmin is determined by the domain and the boundary conditions where we exclude the frequency
zero, which yields a smallest eigenvalue zero of Ĉ . That is not relevant if the right-hand side is
in the image of the operator. So the condition number of the continuous variant of C based on
Fourier analysis is bounded by �2/ f 4min. Hence, it is finite for all f1, f2> fmin.

For the discrete case on a B-grid (for a motivation see [25]) the symbols of A and B are

Ã =

⎛
⎜⎜⎜⎝

4

h2

(
sin2

(
f1h

2

)
+ sin2

(
f2h

2

))
−�

�
4

h2

(
sin2

(
f1h

2

)
+ sin2

(
f2h

2

))
⎞
⎟⎟⎟⎠

B̃ =

⎛
⎜⎜⎜⎝

2i

h
cos

(
f2h

2

)
sin

(
f1h

2

)

2i

h
cos

(
f1h

2

)
sin

(
f2h

2

)
⎞
⎟⎟⎟⎠

which leads in an analogous way to the symbol

C̃ =

(
sin2

(
f1h

2

)
+ sin2

(
f2h

2

))(
cos2

(
f2h

2

)
sin2

(
f1h

2

)
+ cos2

(
f1h

2

)
sin2

(
f2h

2

))
(
sin2

(
f1h

2

)
+ sin2

(
f2h

2

))2

+ �2
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In this case the largest eigenvalue is bounded by 4/(4+�2) which is by itself less than one. For
the smallest eigenvalue we have two cases from which we have to take the minimum. The first one
is the same as that of the continuous case and the second occurs if the cosines in the numerator
are close to zero. In any case the minimum eigenvalue is at least the ratio of the minimum of
the numerator divided by the maximum of the denominator. The latter is simply 4 + �2 and an
elementary analysis shows that the sought minimum of the numerator occurs if f1 = f2 and f1 is
closest to �/h (i.e. the highest frequency that can be represented on the grid). The numerator will
then have a value approximately (� − fmaxh)2, hence the condition number in the discrete case is

max(�2/ f 4min, 4/(� − fmaxh)2)

Now, if the mesh size decreases fmax will tend to �/h, we exclude here the sawtooth Fourier
component which gives a smallest eigenvalue zero. Hence, the second part in the max expression
will dominate the first if the mesh size becomes small. However, in ocean models we have quite
large mesh sizes and currently we do not encounter problems due to a dominating second part.
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